- Mehran Arabi
- - Biology Department, Faculty of Sciences, Shahr Kord University, Shahr-e-Kord, Iran
- Ahmad Ali Mohammadpoor
- - Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahr-e-Kord, Iran
Received: 4/1/2005 Accepted: 4/1/2005 - Publisher : Avicenna Research Institute |
|
Related Articles |
|
Other Format |
|
|
|
Abstract
Introduction: Oxidative stress (OS) is an important factor in the etiology of male infertility which presents abnormal increase in the production of free radicals with negative influences on reproduction. The aim of present study is evaluation effect of mercury (Hg) (600& 1200 micro molar) and nicotine (0.75 mM), in vitro, on membrane integrity (LPO), GSH content, motility, and acrosome reaction of bull spermatozoa with/ without manganese (Mn) and albumin (BSA). Materials and Methods: Lipid peroxidation (LPO) was assessed by measurement of MDA levels. Reduced glutathione (GSH) content evaluated by levels of reduced DTNB and acrosome reaction evaluated by gelatin digestion test. Sperm motility was assessed by under phase contrast micro-scopy at room temperature until 120 min. Statistical analysis performed using SPSS software by t- test, at p<0.05 significance level. results: our results showed that addition of hg and nicotine to the sperm samples resulted in elevation of lpo rate (p<0.001). meanwhile, hg and nicotine treatments caused a significant reduction in the gsh content, motility, and acrosome reaction of bull sperm cells. concomitantly, there was also an improvement in the mentioned altered processes following albumin and manganese addition. here, mn had better results than bsa. we found that bsa act as a pro-oxidant when added to medium containing high concentrations of metal ions, imposing more deleterious effects on bull spermatozoa [more increase in the lpo and decrease in gsh level (p<0.01), decreased acrosome reaction (p<0.001) and dropped motility]. conclusion: according to our results, hg and nicotine may impose sperm dysfunction in bull spermatozoa via altering some biochemical and physiological aspects of sperm like membrane integrity and cell movement. our data suggest bsa and mn that involved in antioxidant capacity are as double-edged swords (particularly bsa), which may show unwanted and negative effects.< pan>0.05>
Keywords:
Spermatozoa, Mercury, Nicotine, Manganese, Albumin, Oxidative stress, Motility, Acrosome reaction, GSH, Antioxidant To cite this article:References
- Agarwal A., Saleh R.A., Bedaiwy M.A. Role of rea-ctive oxygen species in the pathophysiology of human reproducetion. Fertil Steril.2003;79:829-843.
- عربي مهران، راويندر آناند. تاثير نيكوتين بر اسپرم افراد نورمواسپرميك: تعديل توسط آنتياكسيدانها. فصلنامه باروري و ناباروري،سال سوم،شماره يازدهم، تابستان1381،صفحات22-11.
- Arabi M., Sanyal S.N., Kanwar U., Anand, R.J.K. The Effect of antioxidants on nicotine and caffeine induced changes in human sperm-An in vitro Study. In: Male fertility and lipid metabolism. Editors. De Vriese S.R., Christophe A.B.), Chapter 16, Published by AOCS Press, USA.2003;pp:250-267.
- Arabi M. Nicotinic infertility: assessing DNA and plasma membrane integrity of human spermatozoa. Andrologia.2004;36(5):305-310.
- Arabi M. Analysis of impact of metal ion contamina-tion on Carp (Cyprinus carpio L). Biol Trace Elem Res. 2004;100(3):229-246.
- Aitken R.J., Clarkson J.S., Fisher S. Generation of rea-ctive oxygen species, lipid peroxidation and human sperm function. Biol Reprod.1989;40:183-197.
- Iwasaki A., Gagnon A. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril.1992;57:409-416.
- Agarwal A., Allamaneni S.S., Nallella K.P., George A. T., Mascha E. Correlation of reactive oxygen species levels with the fertilization rate after in vitro fertili-zation: a qualified meta-analysis. Fertil Steril.2005;84 (1):228-231.
- Sikka S.C. Oxidative stress and role of antioxidants in normal and abnormal sperm function. Front Biosci. 1996;1:78-86.
- Depuydt C.E., Bosmans E., Zalata A., Schoonjans F., Comhaire F. The relation between reactive oxygen spe-cies and cytokines in andrological patients with or without male accessory gland infection. J Androl.1996; 17:699-707.
- Halliwell B., Gutteridge J.M.C. Free radical in biolo-gy and medicine. 2nd Edition, Published by Clarendon Press, Oxford.1989;pp:372-390.
- Kankofer M., Kolm G., Aurich J., Aurich C. Activity of glutathione peroxidase, superoxide dismutase and catalase and peroxidation intensity in stallion semen during storage at 5 degrees C. Theriogenology.2005; 63(5):1354-1365.
- Aitken R.J., Harkiss D., Bukingham D. Relationship between iron-catalyzed lipid peroxidation potential and human sperm function. J Reprod Fertil.1993;98:257-265.
- Fiscor G., Ginsberg L.C., Oldford G.M., Snoke R.E., Becker R.W. Gelatin-substrate film technique for detec-tion of acrosin in single mammalian sperm. Fertil Steril. 1983;30:543-552.
- Sedlak J., Lindsay R.H. Estimation of total, protein-bound and non- protein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25:192-205.
- Verma A., Kanwar K.C. Human sperm motility and lipid peroxidation in different ascorbic acid concentra-tions: an in vitro analysis. Andrologia.1998;23:325-29.
- Sharma R.K., Agarwal A. Role of reactive oxygen species in male infertility. J Urol.1996;48:835-850.
- Crinnion W.J. Environmental medicine, part three, Long-term effects of chronic low dose mercury expo-sure. Altern Rev Med.2000;5:209-223.
- Schurz F., Sabater-Vilar M., Fink-Gremmels J. Mut-agenicity of mercury chloride and mechanisms of cellular defence: the role metal-binding proteins. Mutage-nesis. 2000;15(6):525-530.
- Rao M.V., Sharma P.S. Protective effect of vitamin E against mercuric chloride reproductive toxicity in male mice. Reprod Toxicol.2001;15:705-712.
- Araragi S., Kondoh M., Kawase M., Saito S., Higash-imoto M., Sato M. Mercuric chloride induces apoptosis via a mitochondrial-dependent pathway in human leukemia cells. Toxicology.2003;184:1-9.
- Sener G., Sehirli A.O., Ayanoglu-Dulger G. Melatonin protects against mercury (II)-induced oxidative tissue damage in rats. Pharmacol Toxicol. 2003;93:290-296.
- Shinada M., Takizawa Y., Muto H. Effect of mercuric chloride on phospholipid peroxidation in rat. Nippon Koshu Eisei Zasshi.1990;37(12): 1010-1014.
- Delnomdedieu M., Allis J.W. Interaction of inorganic mercury salts with model and red cell membrane: im-portance of lipid-binding sites. Chem Biol Interact.1993; 88:71-87.
- Marchi B., Burlando B., Moore M.N., Viarengo A. Mercury and copper-induced lysosomal membrane destabilisation depends on [Ca2+]i dependent phosphor-lipase A2 activation. Aquat Toxicol.2004;66:197-204.
- Lund B.A., Miler D.M., Woods J.S. Mercury-induced H2O2 formation and lipid peroxidation in vitro in rat kidney mitochondria.Biochem Pharmacol.1991;42:181-187.
- Nath K.A., Croatt A.J., Likely S., Behrens T.W., Warden D. Renal oxidant injury and oxidant response induced by mercury. Kidney Int.1996;50:1032-1043.
- Ariza M.E., Bijur G.N., Williams M.V. Lead and mer-cury metagenesis: Role of H2O2, superoxide dismutase, and xanthine oxidase. Environ Mol Mutagen.1998;31: 352-361.
- Halliwel B., Gutteridge J.M.C. Oxygen toxicity, oxy-gen radicals, transition metals and disease. Biochem J. 1984;219:1-14.
- Cope G.F. The in vitro effects of nicotine and cotinine on sperm motility. Hum Reprod.1998;13:777-778.
- Wetscher G.J., Bagchi M., Bagchi D., Perdikis G., Hinder P.R., Glaser K., Hinder R. Free radical production in nicotine treated pancreatic tissue. Free Radic Biol Med.1995;18:877-882.
- Yuli I., Wilbrandt W., Shinitzky M. Glucose transport through cell membrane of modified lipid fluidity. Biochemistry.1981;20:4250-4257.
- Meister A., Anderson M.E. Glutathione. Ann Rev Biochem.1983;52:711-760.
- Elia A.C., Galarini R., Taticchi M.I., Dorr A.J., Man-tilacci L. Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol Environ Saf.2003;55:162-167.
- Hultberg B., Anderson A., Isaksson A. Interaction of metals and thiols in cell damage and glutathione distri-bution: potentiation of mercury toxicity by dithiothrei-tol. Toxicology.2001;156: 93-100.
- Lissak A., Wiener-Megnazi Z., Reznick A.Z., Shnizer S., Ishai D., Grach B., Lahav-Baratz S., Shiloh H., Koi-fman M., Dirnfeld M. Oxidative stress indices in semi-nal plasma, as measured by the thermocheminesce-nce assay, correlate with sperm parameters. Fertil Steril. 2004;81(suppl.1):792-797.
- Bilodeau J.F., Blanchette S., Cormier N., Sirard M.A. Reactive oxygen species-mediated loss of bovine sperm motility in egg yolk Tris extender: protection by pyru-nate, metal chelators and bovine liver or oviduvtal fluid catalase. Theriogenology.2002;57(3):1105-1122.
- Woo A.L., James P.F., Lingrel J.B. Sperm motility is dependent on a unique isoform of the Na, K-ATPase. J Biol Chem.2000;275:20693-20699.
- Au D.W., Chiang M.W., Wu R.S. Effects of cadmium and phenol on motility and ultrastructure of sea urchin and mussel spermatozoa. Arch Environ Cont Toxicol. 2000;38(4):455-463.
- Tien M., Bucher J.R., Aust S.D. Thiol-dependent lipid peroxidation. Biochem. Biophys Res Commun.1982;107(1):279-285.